Co-induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat.
نویسندگان
چکیده
Recently, a 22 kDa protein termed p75(NTR)-associated death executor (NADE) was discovered to be a necessary factor for p75(NTR)-mediated apoptosis in certain cells. However, the possible role for p75(NTR)/NADE in pathological neuronal death has yet been undetermined. In the present study, we have examined this possibility in vivo and in vitro. Exposure of cortical cultures to zinc induced both p75(NTR) and NADE in neurons, whereas exposure to NMDA, ionomycin, iron, or H(2)O(2) induced neither. In addition, zinc exposure increased neuronal NGF expression and its release into the medium. A function-blocking antibody of p75(NTR) (REX) inhibited association between p75(NTR) and NADE as well as neuronal death induced by zinc. Conversely, NGF augmented zinc-induced neuronal death. Caspase inhibitors reduced zinc-induced neuronal death, indicating that caspases were involved. Because reduction of NADE expression with cycloheximide or NADE antisense oligonucleotides attenuated zinc-induced neuronal death, NADE appears to contribute to p75(NTR)-induced cortical neuronal death as shown in other cells. Because zinc neurotoxicity may be a key mechanism of neuronal death after transient forebrain ischemia, we next examined this model. After ischemia, p75(NTR) and NADE were induced in degenerating rat hippocampal CA1 neurons. There was a close correlation between zinc accumulation and p75(NTR)/NADE induction. Suggesting the role of zinc here, injection of a metal chelator, CaEDTA, into the lateral ventricle completely blocked the induction of p75(NTR) and NADE. Our results suggest that co-induction of p75(NTR) and NADE plays a role in zinc-triggered neuronal death in vitro and in vivo.
منابع مشابه
NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR.
The low affinity neurotrophin receptor p75NTR can mediate cell survival as well as cell death of neural cells by NGF and other neurotrophins. To elucidate p75NTR-mediated signal transduction, we screened p75NTR-associated proteins by a yeast two-hybrid system. We identified one positive clone and named NADE (p75NTR-associated cell death executor). Mouse NADE has marked homology to the human HGR...
متن کاملL-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملLate calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death.
Transient global ischemia induces a delayed rise in intracellular Zn2+, which may be mediated via glutamate receptor 2 (GluR2)-lacking AMPA receptors (AMPARs), and selective, delayed death of hippocampal CA1 neurons. The molecular mechanisms underlying Zn2+ toxicity in vivo are not well delineated. Here we show the striking finding that intraventricular injection of the high-affinity Zn2+ chela...
متن کاملSuppression of the p75 neurotrophin receptor in uninjured sensory neurons reduces neuropathic pain after nerve injury.
The p75 neurotrophin receptor (p75NTR) has been implicated in diverse neuronal responses, including survival, cell death, myelination, and inhibition of regeneration. However, the role of p75NTR in neuropathic pain, for which there is currently no effective therapy, has not been explored. Here, we report that the pharmacological blockade of p75NTR in primary sensory neurons reversed neuropathic...
متن کاملNeurobiology of Disease Suppression of the p75 Neurotrophin Receptor in Uninjured Sensory Neurons Reduces Neuropathic Pain after Nerve Injury
The p75 neurotrophin receptor (p75NTR) has been implicated in diverse neuronal responses, including survival, cell death, myelination, and inhibition of regeneration. However, the role of p75NTR in neuropathic pain, for which there is currently no effective therapy, has not been explored. Here, we report that the pharmacological blockade of p75NTR in primary sensory neurons reversed neuropathic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 24 شماره
صفحات -
تاریخ انتشار 2000